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SUMMARY 
This paper is concerned with an investigation of artificial dissipation models that are used with the cell-vertex 
finite volume approximation of the compressible Euler and Navier-Stokes equations. Based on the observation 
that first and second-order upwind schemes can be written as a central discretization plus an appropriately scaled 
dissipative flux, a matrix scaling of second and fourth-differences is implemented in an artificial dissipation model 
that also uses a procedure to limit the applicability of shock-capturing dissipation. Analysis of the model and the 
associated boundary conditions is given to determine the effect on accuracy. Numerical results are given for 
transonic Euler flow past a NACA0012 aerofoil profile which demonstrate the improved shock-capturing 
capability of the model. Results for laminar subsonic viscous flow over a flat plate show that the matrix-dissipation 
model reduces the amount of spurious artificial dissipation within boundary layers. 
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1. INTRODUCTION 

The accurate solution of the steady compressible Euler and Navier-Stokes equations is a major 
challenge for any numerical method. The main computational problem is the monotonic resolution 
of discontinuous or very steep interior layers such as shocks and shear layers, whilst maintaining 
accuracy where the solution is smooth, for instance in boundary layers. 

For problems with strong shocks, finite volume methods appear to be the method of choice due to 
their inherent conservation properties. In this paper we consider centred finite volume 
approximations which require some form of artificial dissipation to capture shocks and to damp 
high-frequency solution components. In particular, we concentrate on a cell-vertex formulation 
where the unknowns are located at the vertices of the quadrilateral grid cells. The particular cell- 
vertex method was originally proposed for the Euler equations by Nil and Hall2 and was analysed 
by Morton and Pai~ley,~ who also successklly applied shock-fitting techniques for transonic 
problems. The method has been extended to the compressible Navier-Stokes equations and 
competitive results have been obtained for a series of test problems.- 

The artificial dissipation model used in Crumpton et ~ 1 . ~  consists of a non-linear blend of second 
and fourth-differences based on the model of Jame~on.~  This model hiis been applied to many 
central discretisations of the Euler and Navier-Stokes equations and has been modified and analysed 
in Reference 8 and 9. However, the original model performs poorly in some circumstances since the 
model is scalar in nature. For example, in inviscid transonic flow, excessive second-difference 
dissipation results in normal shock profiles being captured in three to five mesh cells. This compares 
unfavourably with the performance of upwind methods which usually capture normal shocks in two 
or three mesh cells. For high Reynolds number Navier-Stokes calculations, excessive fourth- 
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difference dissipation can be introduced normal to solid boundaries." This leads to artificially 
thickened boundary layers and inaccurate drag prediction. Modifications of Jameson's model have 
been recently been proposed that scale the artificial dissipation terms by a matrix which has been 
derived from symmetric formulations of first-order upwind The authors report an 
improvement in solution accuracy at the price of a slight increase in CPU time. 

The purpose of this paper is to investigate an artificial dissipation model based on a matrix-scaled 
blend of second and fourth-differences that also uses a procedure to limit the application of shock- 
capturing dissipation. In addition, we analyse the smoothing characteristics of the artificial 
dissipation boundary conditions. By examining the different contributions to the flux balance of the 
nodal and cell residuals for Euler and Navier-Stokes test problems we are able to see the beneficial 
effect of these modifications of the artificial dissipation model. The layout of this paper is as 
follows: in Section 2 we give the governing equations for two-dimensional compressible gas flow 
and in Sections 3 and 4 we present the cell-vertex discretisation and iterative solution procedure. In 
Section 5 we describe and analyse the artificial dissipation model used in Crumpton et aL4 In 
Section 6 we consider a matrix-scaled dissipation model which also incorporates a shock-detection 
procedure. We present numerical results in Section 7 using the new model. Finally, we make some 
conclusions in Section 8. 

2. THE GOVERNING EQUATIONS 

The Navier-Stokes equations describing steady, two-dimensional, compressible flow are written in 
conservation form as 

V.tftw, VW), g(w, VW)) = 0, ( x , y )  E n. (1) 

The vector of conserved variables and the flux functions have the following non-dimensionalized 
form 

where 

f(W, VW) = P(w) + fY(W, VW) and g(w, VW) = g'(w) + gv(w, VW). 

Here, p,  u, v, p ,  E and H denote the density, the two Cartesian components of velocity, the pressure, 
the total specific energy and the total specific enthalpy respectively. The deviatoric stress and heat 
conduction terms are given by 
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P aT 
( y  - l)M&RePr%' q x  = - (7) 

where y ,  Re, Pr and M ,  denote the adiabatic constant, the Reynolds number, the Prandtl number 
and the freestream Mach number respectively. The laminar viscosity, p, is assumed to vary with 
temperature according to Sutherland's law. The equation system is closed by assuming an ideal gas 
law which gives 

The domain, R, is assumed to be an open, connected subset of R2 with boundary asZ Since our 
main interest is in external flows, R should be infinite; but for computational purposes it is truncated 
and appropriate far-field boundary conditions introduced. We assume that a steady solution exists 
that satisfies an integrated form of ( l ) ,  namely 

where R, is any sub-region of 51. 

3. THE CELL-VERTEX DISCRETIZATION 

We assume that the domain R can be partitioned by a set of non-overlapping, convex quadrilateral 
cells such that fi = U,&. This partition of the domain will be called the primary grid. The finite 
volume discretization of (10) is obtained using a quadrature rule to approximate the boundary 
integral for each 0,. For cell-vertex formulations of the finite volume method the discrete solution 
vector Wi,j is held at the vertices of the primary grid cells and in this paper the integration of 
inviscid fluxes along each cell edge is approximated using the trapezoidal rule. 

To integrate the viscous flux functions we first need an approximation of Vw. In this paper the 
gradient is approximated at the midpoint of each cell edge using a procedure given in Reference 4. 
Thereafter, the viscous flux boundary integral is approximated using the mid-point rule. Summing 
the approximations of the inviscid and viscous flux integrations and dividing by the cell volume we 
get the cell residual 

where Ff and Fl",i denote the approximations of the inviscid fluxes and viscous fluxes at xi and xi,+ 
respectively. The residual for cell Ra involves the twelve points shown in Figure 1. The lack of 
compactness of the stencil is due to the discretisation of the viscous fluxes and is the price that is 
paid for the four point compact discretisation of the inviscid terms. With the volume weighted 
scaling, %, represents the rate of change of the average of W in R, for the unsteady problem; for the 
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Figure 1. Geometric configuration of flow variables for the conservation cell nor; inviscid and viscous fluxes and 
0 viscous fluxes 

steady problem the aim is to drive these residuals to zero. It should be emphasized that the inviscid 
and viscous fluxes are integrated around the same control volume to give a consistent cell residual 
centred on the cells of the primary grid. 

4. SOLUTION PROCEDURE 

Having established the definition of a set of cell-based residual %, based on (1 l), it remains to 
describe the solution procedure to determine W. Obviously we would expect the number of cell 
residuals equations to match the total number of unknowns but this requires a carehl treatment with 
the cell-vertex method as each residual equation is associated with a cell of the primary grid and not 
a nodal unknown. As in References 4 and 6, we adopt the procedure of setting combinations of cell 
residuals to zero using a generalized Lax-Wendroff scheme to distribute contributions from each cell 
residual to its four comers to produce a 'node-based' residual 

where p is the number of cells meeting at node (i, 13, and normally p = 4. The exact form of the 
Lax-Wendroff distribution matrices, D,(iJl, can be found in Reference 4. The solution W is found 
using Richardson relaxation on the nodal residual equations giving the iteration 

where wij  is a node based relaxation parameter. The resulting Lax-Wendroff iteration, through its 
use of the Jacobian matrices, represents a crude way of associating each unknown at a vertex with 
the cells which are in some sense upwind of it. At convergence a matrix-weighted combination of 
residuals is set to zero and in general we cannot deduce that the Lax-Wendroff procedure sets the 
cell residuals to zero. Not surprisingly, artificial dissipation also plays a large part in determining the 
exact flux balance at convergence. 

5. NUMERICAL DISSIPATION 

There are two main reasons why we need to use artificial dissipation with the cell-vertex finite 
volume method. First, the discretisation for both inviscid and viscous problems admits a chequer- 
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Figure 2. Distribution of the cell residual to the four cell vertices, and of the four cell residuals to the update at the vertex i, j 

board spurious solution mode. Unfortunately, the Lax-Wendroff distribution of the cell residuals to 
form a nodal-residual does not introduce any damping of these high frequency modes which are 
therefore only checked by the imposition of boundary conditions. This control is often very weak 
and results in slow convergence of the time-stepping procedure. The second problem is caused by 
cells that are crossed by shocks. The use of the trapezoidal rule to approximate the integral of a 
discontinuous flux results in a large local error in the cell flux balance. Unless a careful distribution 
of cell residuals is performed, a process which can be done for the one-dimensional Euler 
 equation^,'^ then some form of shock-capluring artificial dissipation is necessary to prevent 
oscillations and possible instabilities. 

The artificial dissipation model used in References 4 and 6 is based on the model by Jameson et 
al.’. Using the notation 6: and 6; to denote second-difference operators along the body-fitted 
coordinate lines, and referring to Figure 2, the distribution of the artificial viscosity vector from cell 
QOL to node ( i ,J )  is given by 

& ( j ,  j)(W) := zpqwi,j - w i-1, j )  + 7(,-”(W. 1, J ’ - w. I ,  J+1 . ) 

-r:49qh;Wi,j - 6;wi-l,j) - z:*”(6;wi,j - qwi, j + l ) .  (14) 

The quantities ~(a2*e) and 7i4*() are cell-based scalings given by the formulae 

and &’) and E ( ~ )  are user chosen constants. Similar quantities are also defined for the q coordinate 
direction. These terms are combined with the cell-based residual terms to give the nodal residual 

When four cells meet at a common vertex, the overall effect of the distribution of the artificial 
viscosity vector is to add a scaled second and fourth-difference to the node-based equation (12). 
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5. I. Analysis of the basic model 

5.1.1. Cell-based scalings. An obvious consideration in the design of any artificial dissipation 
model is its effect on the accuracy of the base discretization scheme being used. When the solution is 
smooth the artificial dissipation terms should introduce an error of higher order compared to the 
discretization error of the governing equations. For a second-order scheme like the cell-vertex method 
this means that the error introduced by the artificial dissi ation terms must be at least O(h3). 
Examining the scalings (1 5a) and (1 5b) we note that both $’) and zf”) are proportional to At;’, 
which is determined for inviscid problems by a local CFL condition. Since the maximum eigenvalue 
of the flux Jacobian matrices is always bounded away from zero, At;’ is O(h-’ and since both and 
IC:, are O(h2) on smoothly varying grids, this implies that zi2”) and ti4*’) are O(h) and O(h-’) 
respectively. When the contributions from the four cells meeting at a node are summed, the error 
introduced by both the second and fourth-difference artificial dissipation terms is therefore O(h3). If 
the exact solution is smooth and the computation is performed on a smoothly varying grid, second- 
order accuracy of the basic discretization scheme should therefore be observed. Although this analysis 
shows that the artificial dissipation model does not affect the asymptotic accuracy of the finite volume 
discretization, it does not give us any insight into the level of artificial dissipation present in a solution 
on a fixed grid. 

We now discuss two deficiencies of the original model that we propose to eradicate. First, since 
the edge differences in both co-ordinate directions are scaled by the cell-based quantity At;’, the 
above dissipation model is isotropic in nature. This may be acceptable for Euler calculations which 
are usually performed on grids that have close to unit aspect ratio cells. However, an isotropic 
scaling of the artificial dissipation terms may introduce excessive dissipation when strongly graded 
grids are used for high Reynolds number Navier-Stokes calculations. For example, consider 
calculating flow over a flat plate using rectangular grid cells where Ax % Ay. Close to the plate 
surface the fourth-difference dissipation 

where c is the local sound speed. Unless the grid is chosen such that wxAx x wyAy, then excessive 
dissipation, proportional to the cell aspect ratio, will be added in the x-direction. This inaccuracy is 
directly attributed to the scaling of the edge differences by a cell-based time step. 

Secondly, we note that the original model multiplies the second and fourth-differences by At;’ for 
each component of the equation system and is therefore scalar in nature. This is the main cause of 
smeared shock profiles and excessive artificial dissipation in boundary layers. For Navier-Stokes 
calculations a possible strategy for reducing the level of artificial dissipation in boundary layers is 
simply to scale the normal dissipation by a factor proportional to the local Mach number: where 
both d2) and d4) were scaled by the factor min{ 1, M/Mm}. Unfortunately, as we shall see later, this 
simple approach is inadequate. 

5. I..?. Boundary conditions. Artificial dissipation from cells adjacent to domain boundary has to be 
modified since a second-difference of the conserved variables in the non-body co-ordinate direction is 
required on the boundary edge. For example, the distribution of Ao,,(i,o) normal to the boundary j = 0 
requires d:Wi,o. As in References 4 and 6 we only consider formulations which use points from inside 
the solution domain and on the boundary. This results in one-sided difference stencils being used to 
approximate second and fourth-differences normal to the domain boundary. 
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If we drop the index i for convenience then the boundary procedure used in Reference 4 is simply 
to set "WO = 0 which will be referred to as BC A in Section 7. This boundary procedure results in 
the differences 

(6:W)o x Go = W2 - 2W1+ Wo (17) 

being used on the boundary and at the first interior point respectively. As in Swanson and Turkel' 
we consider a local mode analysis based on the Fourier symbol of the above difference stencils to 
assess their damping characteristics. The symbol of the difference operator in (17) is 

e0(e) = 2 cos e(C0s e - 1) + 2i sin qcOs e - 11, 

where 0 is the product of the wavenumber and the mesh spacing. For long wavelength modes 6 x 0 
and we get the approximation 

e0(e) x -e2 - ie3. 

What is disturbing about this boundary procedure is that it is in fact anti-diffusive for long 
wavelengths. For high frequency components 8= f n  we get 

e&) = 4. 

For comparison, the standard fourth-difference stencil 

(S4W)j = Wj+2 - 4wj+l + 6Wj - 4wj-1 + Wj-2 

has the symbol 

e0(e) = ~ ( C O S  e - 1 12. 

&,,(e) = e4 
For long wavelengths 

and for short wavelengths 

&(n) = 16. 

Therefore, the boundary difference stencil (17) has a quarter of the high frequency damping 
capabilities of interior stencil and is anti-diffusive for low frequency components. The symbol of the 
difference operator (18) is 

GI (el = 2(1- cos e)(2 - cos e) - 2i sin e(i - cos e) 
and hence 

for 8=0 and 

&(n) = 12. 

At the first interior point we therefore have second-order dissipation for long wavelength modes and 
reasonable high frequency damping. The combination of these two difference stencils suggests that 
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the accuracy of the base discretization may be impaired close to the domain boundary. This will be 
verified numerically in Section 7. 

An alternative boundary condition, which has been advocated for turbulent flows by Swanson and 
Turkel," is to set 

6;wi,o = 6;Wi,]. (19) 

This results in no normal fourth-difference dissipation being applied at j = 0. This might appear at 
first to be unwise as no damping occurs in the normal direction at the boundary. However, this is an 
improvement on the anti-diffusive effect of BC A. At j = 1 the fourth-difference stencil used is 

(S4W), = GI = W3 - 3W2 + 3W1 - WO 

&,(Q) = $04 - io3 

(20) 

which has a Fourier symbol 

for % % O  and 

&(n) = 8. 

The stencil (20) is therefore fourth-order dissipative and has reasonable high fiequency damping 
characteristics. This analysis suggests that this boundary condition has a less deleterious effect on 
accuracy than BC A and will be referred to as BC B in Section 7. 

6 .  MODIFICATIONS OF THE BASIC MODEL 

In this section we propose three changes to the original dissipation model which attempt to 
overcome some of its inaccuracies outlined above. 

6.1. Edge-based scaling 

In order to develop a dissipation model which is more anisotropic, we consider the following 
modifications. Again using the notation of Figure 2, the distribution of the artificial dissipation vector 
from cell Ra to node ( i , j )  is now given by 

where 

and 
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Here, A:-;, . is the largest eigenvalue in modulus of the Jacobian matrix i ( w ,  n) = 
nlA(w) +n;?h(w), where n=(nl, n2) is a unit vector in the direction from grid point (i- 1 , j )  to 
(i,j). For the Euler equations, the largest eigenvalue is given by 

where 

and 

where a is a user defined constant. Similar expressions are used for the scalings in the r ]  co-ordinate 
direction. In Section 7 this dissipation model will simply be called the anisotropic scalar model. The 
edge-based scalings result in an artificial dissipation model which is similar to Jameson’s original 
model and introduces the eigenvalues of the flux Jacobian matrices much more explicitly which 
allows us to consider a second modification. 

6.2. Matrix-based dissipation 

6.2.1. Shock-capturing dissipation. It is well known from symmetric formulations that flux-vector 
split and flux-difference split upwind schemes can be written as a central discretization plus a matrix- 
scaled dissipative As upwind schemes are designed to capture shocks sharply it seems 
reasonable to develop an artificial dissipation model which makes a central discretization behave like 
an upwind scheme at shocks. The shock-capturing component of the basic model is an inexpensive 
attempt to model a first-order upwind scheme at shocks using a scalar to multiply the shock capturing 
dissipation. However, improved shock-capturing capabilities can be achieved using a matrix-scaled 
dissipative flux. Here we replace the scalar Ai-f,, in (6.2) by the matrix l ~ i - ~ , j l  suggested by a 
symmetric formulation of Roe’s method. l4 More precisely, 

* 
lAi.+,jl = RIAIL, 

?here R and L are right and lei? eigenvector matrices of the linear combination of the flux matrices 
A = klA(w)+k2B(w) and k = (kl, k2) is a unit vector. In this paper the diagonalisation direction is 
chosen to be from grid node ( i  - 1, j) to grid node (i ,  j), although the shock n o d  direction may be 
more appropriate for shocks that are not grid aligned. The diagonal matrix 

A = diag(Ai)i,l,...,4 = diag(qk, qkq qk + C,  qk - C), 

where qk=klU+k2v. The elements of the matrices R, L and A afe all calculated using Roe’s 
parameter vector. In practice, one has to be careful using the matrix IAl scaling, since Roe’s scheme 
allows non-physical expansion shocks to arise at sonic points which are insufficiently damped by the 
Lax-Wendroff second-order terms. This can easily be remedied by a so called ‘entropy fix’ where 
we take 1 li 1 = max( I l i  1 , 6  1 Amax 1 ) where 6 > 0 is a chosen (small) parameter. Note that with 6 = 1 
we recover the scalar model. 
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6.2.2. Background smoothing. The role of fourth-difference background smoothing is to damp high 
frequency solution components. Proper damping of these frequencies is essential for the successhl 
application of a multigrid method to improve convergence to a steady state. The scaling used in (26) 
can be motivated by writing a second-order upwind method as a central discretization plus a matrix 
scaling of fourth differences.8 Instead of using an appropriate matrix scaling, Jameson's original model 
multiplies the fourth differences by a scalar quantity. However, it has been shown that this scaling of 
fourth-differences introduces excessive normal dissipation for high Reynolds number Navier-Stokes 
calculations." As with the shock capturing dissipation we consider replacing Ai- l / 2 , j  in (26) by the 
matrix scaling 1 Ai- I . For Roe's method the action of the numerical dissipation vanishes for waves 
when their wave speeds tend to zero. This appears to be crucial to modelling boundary layers 
accurately with upwind methods.I5 

The combination of matrix scaling for both the second-difference terms will be investigated in 
Section 7 where it will be referred to as the matrix-scaled model. 

6.3. Shock-detection 

In both the scalar and matrix-scaled dissipation models outlined above, a second-difference of 
pressure is used as a sensor to detect shocks. However, a second-difference in pressure can be large 
in regions other than at shocks, for example where a shock impinges on a boundary layer or around 
the leading edge of an aerofoil. The addition of second-difference shock-capturing dissipation in 
these regions can adversely effect accuracy. There are many choices of switching function which can 
be made to distinguish more clearly between a shocked and non-shocked region. For example, 
Ha11I6 uses a third difference of density and Swanson and Turkel" have considered using an entropy 
like variable which is further scaled by the local Mach number. Here, we consider using the simple 
normal shock-detection procedure of Crumpton and Shaw.17 The algorithm produces a cell-based 
switch, S,, that takes a unit value when a shock passes through the cell R, and zero elsewhere (see 
Reference 17 for the exact details). The coefficients d and lcfl are then scaled by S,. This ensures 
that the second-difference dissipation is only switched on where it is required. 

7. NUMERICAL EXPERIMENTS 

In this section we investigate the effects of the modifications of the original dissipation model given 
above by considering three test cases. The various constants for both the scalar and matrix-based 
artificial dissipation model are shown in Table I. These constants were calibrated on the transonic 
Euler test given in the next subsection with the requirement of sharp shock resolution. These same 
constants were then used for a Navier-Stokes problem. 

7.1. Transonic Euler flow over a NACAOOl2 aerofoil 

To test the shock-capturing capability of the matrix-based dissipation, we consider inviscid 
transonic flow over a NACAOO12 aerofoil. The freestream flow conditions are M ,  = 0.8 at an angle 
of attack of 1.25", which results in a strong shock on the upper surface of the aerofoil and a much 

Table I. Artificial dissipation constants for both Euler and Navier-Stokes 
test cases 

Dissipation model &(2) &(4) a 6 

Scalar 4.0 0.05 2.0 N/A 
Matrix 20.0 0.05 2.0 0.05 



ARTIFICIAL DISSIPATION 509 

Figure 3. 129 x 33 C-grid used for transonic Euler calculations over a NACA0012 aerofoil 

weaker shock on the lower surface. Three C-type grids were used in this study. The finest grid has 
513 by 129 nodes with 386 nodes on the aerofoil surface, and extends 15 chord lengths into the far- 
field. Two coarser grids with 265 x 65 and 129 x 33 nodes, were obtained by omitting every other 
point of the next finer grid. A general view of the 129 x 33 grid is shown in Figure 3. Close ups of 
the leading edge regions of the three grids are shown in Figure 4, where we can see the clustering of 
the cells into the stagnation point. 

We first consider the effect of the shock detection procedure on the generation of spurious entropy 
at the leading edge of the aerofoil. Figure 5 confirms that additional dissipation is added with the 
standard pressure-based shock detector which is not present when we use the shock detection 
procedure. This can most clearly be seen from the balance of the mass conservation nodal residual. 
Figure 6 shows the results around the leading edge using BC B and shock detection. As predicted in 
the analysis earlier there is a substantial reduction in artificial dissipation present on the aerofoil 
surface using this boundary condition. We can also see for this figure that matrix-scaling at this 
smooth part of the flow has a comparable effect to that of the scalar dissipation. 

Figure 7 shows contour plots of pressure coefficient, surface line plots of pressure coefficient and 
surface line plots of entropy deviation for the three grids using the scalar, anisotropic model with 
shock-detection and BC B. On the coarsest grid the upper shock has been captured within four mesh 
cells and spurious entropy has been generated at the leading edge. As the grid is refined there is a 

(4 (b) (c) 

Figure 4. Close up of leading edge region of (a) 129 x 33; (b) 257 x 65; (c) 513 x 129 node grids used for transonic Euler 
calculations 
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Figure 5. Entropy plot and budget plot of mass conservation equation on the upper surface of NACA0012 aerofoil using BC A; 
(a) without shock detection (b) with shock detection 

Table 11. Computed drag, lift and moment coefficients for scalar 
dissipation with shock-detection for Euler test case M, =0.8 and 

a = 1.25" 

Mesh CD CL CM 

129 x 33 0.02243 0.36026 - 0.03992 
265 x 65 0.02260 0.35972 - 0.03960 
513 x 129 0.02250 0.360 15 - 0.03953 

Table 111. Computed drag, lift and moment coefficients for matrix 
dissipation with shock-detection for Euler test case M,=O.8 and 

a = 1.25" 

Mesh CD CL CM 

129 x 33 0.02246 0.36182 - 0.04013 
265 x 65 0.0226 1 0.36000 - 0.03962 
513 x 129 0.02254 0.36044 - 0.03970 
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Figure 6. Entropy plot and budget plot of mass conservation equation on the upper surface of NACA0012 aerofoil using BC B 
and shock detection; (a) scalar-scaling (b) matrix-scaling 

marked improvement in the resolution of the lower shock and a reduction of spurious entropy 
generation at the leading edge. However, even on the finest grid the upper shock is smeared over 
four cell widths. 

Table I1 shows the computed lift, drag and moment coefficients for the three grids, all of which 
were obtained using the far-field vortex correction boundary condition of Thomas and Salas.'* It is 
clear from this table that finer grids are required than those used here to determine the rate of 
convergence of the method. The results for all three grids are remarkably similar and differ by less 
than 1%. 

Figure 8 shows the corresponding results using the matrix-based dissipation model. The computed 
shock profiles on the upper and lower surface are sharper than those predicted with the scalar 
dissipation model. In addition we note that the matrix model behaves similarly to the scalar model in 
smooth regions of the flow. Table 111 shows the lift, drag and moment coefficients which behave in a 
similar fashion to those for the scalar model. Again, finer grids would be necessary to investigate the 
convergence rate of the method. 

7.2. Subsonic laminar frow over a frat plate 

The second test case considered is subsonic, laminar, viscous flow over a semi-infinite flat plate at 
zero angle of attack with M ,  =0.8 and Re=2.96 x lo5. The domain for this problem is the 
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4 

(4 (b) ( c )  
Figure 7. Plots of pressure contours, pressure coefficient and entropy deviation on (a) 129 x 33; (b) 257 x 65; and (c) 

513 x 129 node grids with M ,  =@8, a= 1.25" using scalar dissipation with shock-detection 

Table I\! Drag coefficient and number of iterations taken to reach 
convergence for viscous flow over a flat plate 

Dissipation model Avis BC CD Iterations 

Scalar A 0.002882 14000 
Scalar B 0.00321 5 15000 

Scalar, Mach Scaled B 0.003131 15900 
Matrix B 0.003288 17750 
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Figure 8. Pressure coefficient contours, pressure coefficient and entropy deviation on (a) 129 x 33; (b) 257 x 65; and (c) 
5 13 x 129 node grids with M ,  = 0.8, a = 1.25" using matrix dissipation with shock-detection 

rectangular region (- 0.25, 2) x (0, 1.5) and the plate is introduced along the bottom of the domain 
at x = 0. The computational grid has 73 x 8 1 nodes, is uniform in the x-direction and is stretched in 
the y-direction towards the plate. Therefore, no attempt has been made to model the flow accurately 
at the plate leading edge. 

Figure 9(a) shows the computed skin-friction coefficient along the plate using the anisotropic, 
scalar dissipation model with artificial dissipation boundary condition A. The cell-vertex solution 
badly underestimates the reference Blasius solution towards the front of the plate suggesting the 
presence of excessive numerical dissipation in this region. Figure 9(b) shows the tangential velocity 
profile at x = 1, which is plotted with respect to the similarity co-ordinate q = y m .  Compared to 
the Blasius profile we see that the boundary layer is excessively thick and has an overshoot at its 
edge. This again suggests excessive artificial dissipation. 

To investigate the level of artificial dissipation present in a numerical solution we consider the 
balance of the inviscid, viscous and artificial dissipation fluxes of the nodal residual. Figure lO(a) 
shows the balance of the three flux contributions through the boundary layer for the x-momentum 
and mass conservation nodal residuals at x = 1. We see that the artificial dissipation flux is 
significant close to the surface of the plate, throughout the boundary layer and at the boundary layer 
edge. Similar plots have been obtained by Allmaras'o and Tattersall and McGuirk." As the flow is 
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Figure 9. Skin-friction coefficient along plate and tangential velocity at x = 1 for Navier-Stokes flow over a flat plate, 
Re = 2.96 x lo5 and M, = 0.8, using anisotropic scalar dissipation with boundary condition A 

subsonic, the excessive dissipation in the solution is caused by the fourth-difference dissipation. As 
mentioned earlier, the role of the Lax-Wendroff distribution matrices is to provide a mapping from 
the cell residuals to the nodal residuals. At the steady state the nodal residuals are zero and we hope 
that the cell residuals have also been set to zero. Figure 10(b) shows the inviscid and viscous flux 
contributions to the x-momentum and mass conservation cell residuals. These figures indicate a very 
poor cell flux balance that has been mainly caused by excessive numerical dissipation. Both the cell 
and nodal flux balances are especially poor close to the plate surface which suggests an inaccuracy 
caused by the artificial dissipation boundary condition. Figures 11 and 12 show the results using the 
artificial dissipation boundary condition B. The results are considerably more accurate at the plate 
surface which is clearly evident from the skin-fnction coefficient. Furthermore, there is a ten-fold 
reduction in the level of artificial dissipation in the mass conservation nodal residual and a two-fold 
reduction in the mass conservation cell residual. All of the following results were therefore obtained 
using this boundary condition for the fourth-difference dissipation. 

The effect of scaling the fourth-difference dissipation normal to the plate surface by the local 
Mach number is shown in Figures 13 and 14. This clearly leads to an improvement of the computed 
skin-friction coefficient along the plate but the nodal and cell equation budget plots only show a 
limited improvement. In particular, there is still an excessive amount of dissipation at the boundary 
layer edge which has been unaffected by the Mach number scaling. 

Finally, Figures 15 and 16 show the results obtained using the matrix scaling of the fourth- 
difference dissipation. The computed skin-friction coefficient is accurately predicted along the length 
of the plate, in particular at the leading edge. The improvement in the solution is more clearly seen 
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Figure 10. Budget plots of x-momentum and mass conservation equations at x = 1 for the (a) nodal residual and @) cell residual 
for Navier-Stokes flow over a flat plate, Re = 2.96 x lo5 and M, = 0.8, using anisotropic scalar dissipation with boundary 

condition A 

when we look at the tangential velocity profile which has very little overshoot and resembles the 
Blasius profile more closely. In addition, the nodal and cell budget plots both show a dramatic 
reduction in the level of fourth-difference dissipation. 

Table IV shows the computed drag coefficient and the number of iterations to reach convergence 
for all of the above dissipation models. As expected, the matrix model takes longer to converge than 
all of the variations of the scalar model due to its reduced damping capabilities. However, this is 
outweighed by the improvement in accuracy which is evident from the plots given above. 

8. CONCLUSIONS 

In this paper we have investigated an artificial dissipation model for use with the cell-vertex finite 
volume discretization of the Euler and Navier-Stokes equations. The numerical results obtained for 
Euler aerofoil calculations show that the model improves shock resolution and reduces the level of 
spurious entropy generation at the aerofoil leading edge. For Navier-Stokes calculations the amount 
of excessive numerical dissipation has been reduced thus increasing the accuracy of the prediction of 
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Figure 1 I .  Skin-fnction coefficient along plate and tangential velocity at x = 1 for Navier-Stokes flow over a flat plate, 
Re = 2.96 x lo5 and M ,  = 0.8, using anisotropic scalar dissipation with boundary condition B 

boundary layer thickness and viscous drag. The decrease in artificial dissipation within boundary 
layers also helps to attain a better flux balance on the primary grid cells. The decrease in the level of 
fourth-difference dissipation does increase slightly the number of iterations needed to reach a 
converged solution and with each iteration being slightly more expensive the overall effect is to 
increase the cost of a typical calculation by 20%. However, the improvement in accuracy, especially 
on coarse grids, makes the use of the matrix dissipation worthwhile. Finally, although a particular 
cell-vertex scheme was used in this study, the matrix-dissipation model with shock-detection can 
also be used with other centred vertex-based finite volume methods. The analysis of the artificial 
dissipation boundary conditions is also applicable for such schemes. 
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Figure 13. Skin-friction coefficient along plate and tangential velocity at x = 1 for Navier-Stokes flow over a flat plate, 
Re = 2.96 x 10’ and Ma = 0.8, using anisotropic scalar dissipation with Mach scaling and boundary condition B 
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Figure 15. Skin-fnction coefficient along plate and tangential velocity at x =  1 for Navier-Stokes flow over a flat plate, 
Re = 2.96 x lo5 and M, = 0.8, using anisotropic matrix dissipation and boundary condition B 
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